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Abstract--In special cases of crossflow the mean overall heat-transfer coefficient can be calculated, when 
either only laminar length effects or only temperature dependences are present. With one laminar stream 
the mean value can be calculated as for cocurrent and countercurrent flow and the result is valid for 
any flow arrangement. For the case of two laminar streams a solution is presented which is valid for 
any crossflow arrangement. 

For only temperature-dependent heat transfer and crossflow with only one row a special method is 
presented. According to this method heat transfer must be calculated at two points if it depends only 
on the fluid temperature inside the tube, and at four points if it is a function of both fluid temperatures. 

Further, a more general approximation method is described for the calculation of the mean overall 
heat-transfer coefficient and the overall pressure drop, which is valid for any flow arrangement and 
combined length and temperature effects. This approach was developed from a previous pure counterflow 
method; the heat transfer and pressure drop must be calculated at two points. 

The general method was tested with examples for which reliable solutions (special crossflow cases 
and cocurrent flow) are available and very good agreement was obtained. 
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dimensionless group, defined by (16); 
integration constant; 
dimensionless group, defined by (7); 
mass flow rate times specific heat (of the hot 
fluid); 
total heat-transfer area; 
variable, defined by (25); 
variable, defined by (26); 
variable representing an integral; 
local overall heat-transfer coefficient; 
flow length (of hot stream) in one pass; 
variable flow length calculated from the tube 
inlet (flat profiles); 
exponent; 
pressure (of hot stream); 
temperature (of hot stream); 
corrected reference temperature, defined 
by (36); 
overall flow length correction factor, defined 
by (6); 
wall resistance; 
dummy variable. 
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Greek symbols 

~, local heat-transfer coefficient (of hot stream); 
fl, ?, exponents; 

A, finite difference; 
~, local flow length correction (of hot stream); 
®, dimensionless temperature (of hot stream); 
4, dimensionless flow path of hot stream, 

defined by (1); 
~b, dimensionless flow path of cold stream, 

defined by (1); 
~, reference temperature correction (of hot 

stream). 

Subscripts 

C, 

in, out, 
(in), 

(out), 
L, 
M, 

0, ~ = 0, inlet of hot stream; 
1, ~ = 1, outlet of hot streem; 
q~, inlet of cold stream, = 0; 
qS, outlet of cold stream, = 1; 
I, II, reference points for Gaussian integration 

over i-co-ordinate;  
i, counter for I and II;  
a,b, reference points for Gaussian integration 

over q~-co-ordinate; 
counterflow; 
at inlet or outlet, respectively; 
determined only with the pressure of inlet 
or outlet, respectively; 
laminar; 
correct mean value for heat transfer; 



1038 WILFRIED ROETZEL 

x, y, z, identifiers for distinction of different 
integrals. 

Superscripts 

', cold stream, for one row crossflow unmixed 
or outside the tubes; 
m e a n  value through adiabatic mixing; 

, area average mean value at constant tem- 
perature (only length effect included). 

1. INTRODUCTION 

FOR THE cost-optimized design of heat exchangers with 
the computer [1] as well as for manual design cal- 
culations reliable but fast calculation methods for the 
mean overall heat-transfer coefficient and the overall 
pressure drop are required because, on the one hand, 
the conventional simple method using mean values of 
temperatures as reference temperatures can lead to 
undesirable errors in design and, on the other hand, 
numerical stepwise integrations are prohibitively time 
consuming. 

Various methods for estimating the mean heat- 
transfer coefficient [2-5] and the overall pressure 
drop [6] have been presented taking into account the 
variation of the heat-transfer coefficients and the 
differential pressure drop with temperature and/or 
length of flow path. 

However, considering the temperature effect, all 
methods were derived for pure cocurrent or counter- 
current flow. In air-cooled heat exchangers, as applied 
frequently nowadays, the fin tube bundles are usually 
in crossflow and the counterflow methods are then 
only approximations, with the accuracy increasing with 
the number of passes. Similar considerations are valid 
also for shell and tube heat exchangers where true 
countercurrent flow is only a limiting case. 

The current paper covers the gap between pure 
countercurrent flow and cocurrent flow and first some 
special cases of crossflow are considered. 

2. CROSSFLOW WITH HEAT-TRANSFER COEFFICIENTS 
VARYING WITH EITHER TEMPERATURE 

OR LENGTH OF FLOW PATH 

We consider a crossflow heat exchanger as shown 
in Fig. 1. The dimensionless flow paths of the hot 
stream C flowing inside the tubes in air coolers and of 
the cold stream d" are, respectively, 

I 

L 

l' ~=~. 

The local overall heat-transfer coefficient 

1 1 1 
- ~- w + ~ , ,  { 2 )  

K 

CJ 

P d  

I 

FIG. 1. D imens ion l e s s  f low 
paths (9 and ~ and dimen- 
sionless heat-transfer area 

"1" for crossflow. 

where each resistance is related to the same area. The 
heat-transfer coefficients c~ and c( are changing with 
both temperature and length of flow path but in many 
cases only one of both effects is decisive. For turbulent 
flow (and radiation) the temperature dependence is 
important but the flow length effect can be neglected 
[4]. On the other hand, with laminar flow the tem- 
perature effect is weak whereas the flow length effect 
is most important and the local heat-transfer coefficient 
can then be expressed by 

2 1 ~ ~ 1/3 ~ _ 

(3) 
2 1 

0 ~ = ~ k . 7 .  ~ i/3 = ~ k . ~  

where in the actual case ~e and ~ are functions of 
the fluid and wall surface temperatures. 

According to the conventional method one calculates 
the mean overall heat-transfer coefficient with the area 
average heat-transfer coefficients (arrived at by inte- 
gration at constant wall and fluid temperature) which 
are obtained from the usual heat-transfer equations. 

1 1 1 
_ - ~ + w + - -  ( 4 )  

K 7 :?' 

with subscript L for the alphas in laminar flow. The 
true mean overall heat-transfer coefficient KM, how- 
ever, needed for the design of a crossflow heat ex- 
changer is (for constant C" and C") 

KM = K dq5 d~. (5) 

The mean value KM shall be determined for some 
special cases. 

2.1 Only laminar length effects 
We consider the case that ~?L, ~ and all other 

resistances are constant and thus in (5) K is only a 
direct function of q~ and/or ~ according to (2) and (3). 
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As in [4] and [5] we introduce the ratio 

K~ 
V - ~ (6) 

K 

2.1.1 One stream laminar. When the hot stream ~ is 
in laminar flow a in (2) must be replaced by aL according 
to (3). In (5), substituting K according to (2) and 
introducing (5) and (4) into (6) gives, with the dimen- 
sionless group 

a = ~ - 1 (7) 
K 

the following integral (the integration over ~b, (5), gives 
the factor one): 

f¢:=1 l + a  d ° v = =o ~,7~+ a" ¢ (8) 

Integration gives [6]: 

[ 4 8 a 2 . 1 n ( l +  3)]2a V =  ( l + a )  1 - ~ a + ~ .  . (9) 

For a --+ oo and a --+ 0 the correction V--* 1 as ex- 
pected from (8). 

For the other case that d" is laminar a in (9) must 
be replaced by a' according to (7) with g~. instead of 0~ L. 

The correction factor V according to (9) is equal 
to that ofcocurrent, countercurrent and mixed parallel- 
countercurrent flow derived by Peters [5]. In contra- 
diction to Peters' opinion [5], the correction factor is 
also exactly true for crossflow, as shown by our 
derivation. 

The integration according to (5) could be done over 
separate partial areas Aq~, where in each A4~-~ strip 
the flow direction can be selected arbitrarily and the 
same result would be obtained as given by (9). Thus 
(9) is valid exactly for crossflow with any number of 
passes and any but equal number of rows (of equal 
tube diameter and length) in each pass where the local 
gL or g}~ is constant over the heat-transfer area. 
Equation (9) is exact also for any flow arrangement 
where gL or g}. in each tube section through which 
the laminar stream tows parallel or in series has the 
same value. 

For cocurrent flow (9) is also valid when both 
streams are laminar; then one has to consider the sum 
of both local laminar heat-transfer resistances as one 
laminar heat-transfer resistance. For crossfiow, how- 
ever, two laminar streams have to be treated in the 
following way. 

2.1.2 Both streams laminar and zero wall resistance. 
In the same way as leads to (8) but introducing both 
laminar heat-transfer coefficients with zero wall re- 
sistance: 

f:xf?, V =  =o =0 {l/3+a.4)l/3"d~a'd{ (10) 
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where now a = l/a' because w = 0. Exchanging ~b and 
and by replacing a with a' shows that V is equal for 
a or a' = l/a, respectively. 

Integrating over { from 0 to 1 with constant ~b gives 
according to (9) 

E V = ( l + a ) .  1-2a.q51/3 
,,I¢=0 

1 
+ 2a2. q52/3. In (1 + a . ~ 7 ) 1 .  dqk (11) 

The integration over q~ from 0 to 1 gives (see Appendix) : 

(,) V = 5 - 5 .  a +  + (a2+a3) . ln  1+ 

6 (~1+~1~ l n ( l + a ) - 6 5 ( a 2 + £ 2  ) .  (12) 
+5"\a 2 .U" 

Equation (12) is symmetric for a and a ' =  1/a. For 
a--+ 0 or a--+ oo (12) yields V = 1. As in the case of 
one laminar stream the twofold integration can be 
done over separate sections A{ or (and) AqS, where 
again the flow direction can be inverted in individual 
strips leading to (12). This equation is valid for any 
kind of crossflow provided the local values of 0~L and 
~. are constant over the heat-transfer area and the 
flow directions of both fluids are perpendicular to 
each other. 

i 
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o 

FIG. 2. Correction factor V = K~/R, for laminar 
flow length effect as function of a = (~L//() - 1. 

Figure 2 shows (9) and (12) and also the correspond- 
ing correction factor for pure counterflow and zero 
wall resistance from Peters [5]. The correction factor 
for two laminar streams and zero wall resistance for 
crossflow lies between the corresponding factor for 
counterflow and that of cocurrent flow (V = 1 for 
w = 0). 
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2.2 Temperature effects only; one-row crossflow arrange- 
ment 
Here we must distinguish between different crossflow 

arrangements and we consider the rather uncompli- 
cated and, with respect to mean temperature difference, 
most disadwmtageous case of one row one pass. 

In air-cooled fin tube crossflow heat exchangers a 
hot liquid is usually inside the tubes. The fluid in the 
tubes is considered to be completely mixed in any cross 
section. T is the temperature of the mixed fluid. 
T' is the temperature of the unmixed fluid (usually 
cold air) outside the tubes. We now introduce the 
dimensionless temperature of the mixed fluid 

T -  Ti'~ 
® = Tin- -  Ti~n' (13)  

Replacing the variable temperatures T and 19 in (13) 
by T' and 19' gives the dimensionless temperature of 
the unmixed fluid. 

The dimensionless mean temperature difference is: 

AT,. 
A O M  = - -  . (14)  

Ti. - Ti' 

The change of temperatures along the flow paths is 
shown qualitatively in Fig. 3. 

0 

I 

O' ¢ 

0 

I 

FIG. 3. Distribution of the dimensionless 
temperatures ® and ®' over the dimen- 
sionless heat-transfer area for one row 

c r o s s f l o w .  

For the mixed fluid d" at the inlet ~ = 0 and 
1 9 = ® o = l .  At the outlet ~ = 1  and 0 = 1 9 1  with 
T = Tout. For the unmixed fluid (" at the inlet q5 = 0 
and 19 '=  0~,-0 = 0. At the outlet locally (changing 
with 3) q5 = l and 19' = 19~= 1 with T' = TO'.t. Consider- 
ing the adiabatic mixing outlet temperature which is 
usually given 4} = 1 and 0 '  = O~= 1 with T' = Tout. 

2.2.1 Local heat transjer depending only on the tem- 
perature oJ' the mixed .fluid. With air-cooled heat ex- 
changers the temperature dependence of the liquid 
inside the tubes is more decisive than that of the air 
outside the fin tubes. Therefore (and also for simpli- 
fication), we first consider the case that the local overall 
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heat-transfer coefficient is only a function of the tem- 
perature T or 6}, respectively. Later in this paper the 
method is extended to allow also for variation with T'. 

We make the reasonable simplifying assumption that 
and C' are independent of temperature. 
2.2.1.1 Equation for the true mean overall heat-transfer 

coefficient--The heat which is transferred through the 
small area F.  d~ 

- ~ . d @  = d ' .19;=a.d~ = K . F . d ~ .  ® ; = '  (15) ® 
In 

19-19;=1 

where K is a function only of ®. From the middle and 
righthand part of (15) 19;=1 can be expressed as a 
function of ® and A, the latter defined by 

K . F  
A = -  C' " (16) 

Substituting accordingly in (15) gives 

- (~7.d19 = CT'.O.(1--e-A).d~. (17) 

Solving for d"/C.d~, introducing ln19 as a variable 
[4], [6] and integrating from ¢ = 0 to 1 and 6) from 
1 to 01 gives: 

d" l 'o=o d l n ®  1 
{ 7 -  J o = l / ~ l - e -  A -  l n 1 9 1 . 1 _ e _ a ~ .  (18) 

This equation defines AM as the true mean value over 
the total area F, determined according to (16) with 
the true mean value of the overall heat-transfer co- 
efficient KM [according to (5)]. 

In a design procedure the mean value AM is given 
because 191, C' and ~" are given. From the first and 
last parts of (18) we find by solving for AM 

A M = - - I n  l + ~ , . l n ® l  . (19) 

On the other hand, a total heat balance gives 

O;=1 {20) 
A M -  A19M" 

Substituting AM in (19) according to (20) gives the 
known [7], [8] equation for the mean temperature 
difference 

A19M = - O~,=t (21) 

ln[1 + ~ . l n ® ~ ]  

which is needed for the calculation of the heat-transfer 
area. The corresponding true mean value KM we have 
to determine with the middle part of (18) by substituting 
A according to 

K 
A = A M . 7 .  {22) 

t~M 
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and integrating numerically with an estimated value 
of KM, the true value of Au and the temperature 
dependent changing value of K. If one has estimated 
the true value of KM the integration fulfils (18). This 
trial and error method is very complicated and time 
consuming and a faster method is derived below. 

2.2.1.2 Integration using a two-point Gauss method 
We can obtain the first simplification by using the 
two-point integration method of Gauss, which method 
integrates exactly a polynomial function of third degree. 
According to [4] and [6], (18) becomes 

1 1( 1 1 )  
1 - e  a M - 2  1 - e  - = a ' + l - e  ~ i '  (23) 

where Al and A u must be evaluated according to (22) 
with K~ and Ku. These reference values of the local 
overall heat-transfer coefficient must be determined 
with the reference temperatures T~ and Tn according to 

~)I = {~}]J'21132 
(24) 

®n = O °'Ts~6s 

and (13). Now one can find the wanted value K~a in 
A l and An by estimating KM until (23) is fulfilled. 

However, the following iterative method is far better. 
It was found that (23) is also fulfilled with good 
approximation when A~, A~ and An are multiplied 
with a factor close to one. This fact is applied in the 
following method where AM, A~ and A ,  are multiplied 
by the ratio KM/K*. K*  is an estimated value of KM. 
Multiplying Ax and An with the ratio KM/K* gives 
A~ and A*. The values Kv cancel by this multiplication 
and A~' and A~t must be determined according to (22) 
with the estimated value K* instead of K u and the 
true values of AM and K~ or Kn. Now the r.h.s, of (23) 
can be calculated with A* and A* yielding the mean 
value on the 1.h.s. A* = AM. Ku/K~t. By the multi- 
plication with the ratio KM/K* K.u disappeared on the 
r.h.s, and appeared on the 1.h.s. in A~. Solving for 
KM gives an improved value of K~t and the procedure 
can be repeated. The convergence is very good. 

2.2.1.3 Non-iterative approximation jbr the two-point 
mean value In order to find a good approximate 
value K~t to start with or eventually to bypass the 
iteration, the following approach was derived. 
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If one could find a function of A represented by 
the variable g which is a linear function of f 

1 
f -  1 - e  A (25) 

then in analogy to (23) one could form the mean value 
gu of AM from the reference values 01 and gn of A. 
and An, resulting in the same AM as by (23). 

We now assume that the function 

is approximately a linear function of f .  If we now 
form the mean value of g~ and gn, the unknown area F 
and the heat capacity C' in A [see (16)] cancel and 

1 1 ~ 

We now have to find a suitable value of ft. 
Close to AM the linearity between f and g is 

fulfilled, if 

or (after introducing the variables A) if 

(df/dA)AM _ (dg/dA)AM . (29) 
(dJ/dA)A~ + AA (do/dA)A~ + AA 

Replacing f and g according to (25) and (26) gives: 

eAM+'~A'[1--eAM-AA)2--(AM+AA~ l~+1 (30) 

eAM { l _ e  AM)2 ~ A M - -  fl " 

For the limiting case AA ~ 0 the following equation 
can be derived from (30): 

e AM + 1 
fl = A u  e ; t ~  1 - 1. (31) 

FOrAM ~ oc fl = AM-- 1 and for AM --, 0(C'--+ ~J)fl = 1. 
In the latter limiting case T' is constant and this cross- 
flow method turns into the known cocurrent or 
countercurrent method [4]. 

The accuracy of using (27) and (31) is illustrated by 
Table 1. The calculated examples demonstrate clearly 
that the derived approach yields good approximate 

Table 1. Validity of the approach using equations (27) and 131)(or fi = 1) 

AM, fl, AM(A = K), Error (rel.) Error for 
/~=1 Ai An equation (23) equation (31) equation (27) (%) (%) 

0-2 0-4 0"26647 1"0118 0"26649 + 0.007 + 0"074 
I-0 2"0 1-31055 1.2784 1.31283 +0.174 + 1"738 
5"0 10"0 5.68312 4-7219 5'74514 +1"091 +17.306 

25"0 50"0 25"69315 24-6932 25.71170 +0.072 +29.736 
0'1 1"0 0"18083 1.0054 0.18143 +0"335 +0.547 
1"0 10.0 1.48982 1"3569 1"61465 +8.378 +22"040 

HMT Vol. 17. No. 9 F 
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values of KM. In almost all practical applications these 
approximate values will be sufficiently accurate. Par- 
ticularly when a computer is used one or two iterations 
should be done with this approximate value of KM, 
just to make sure. 

2.2.1.4 Summary of procedure--The true mean over- 
all heat-transfer coefficient can be calculated, if the local 
overall transfer coefficient is a function only of the 
temperature T of the mixed stream (inside the tubes 
of one row) and if the heat capacities of both streams 
are constant. 

From the known inlet and outlet temperatures first 
the dimensionless outlet temperature of the mixed 
stream ®i is calculated according to (13) with T = Tout. 
Then the dimensionless reference temperatures ®l and 
®~t according to (24) and the real temperatures Tt and 
T u according to (13) with T = TI or Tu, respectively, are 
determined. Now the two local overall heat-transfer 
coefficients Ki and/~i  are calculated using the reference 
temperatures TI and T n and (2). 

The mean value AM is calculated according to (19), 
the exponent fl according to (31) and the mean value 
K ~  according to (27). KM thus obtained is a good 
approximate value of the wanted true mean overall 
heat-transfer coefficient. Taking this value as K* it 
can still be improved by iterations described in 
section 2.2.1.2 using (22) and (23). 

2.2.2 Local heat-transfer coefficient dependin9 on both 
fluid temperatures. The method described above can 
be extended easily to the case that the local overall 
heat-transfer coefficient is a function also of the tem- 
perature T'  of the unmixed stream (outside the fin 
tubes), 

Instead of the constant values KI and Kn which were 
independent of T' and 4, we now have to introduce 
the true mean values Ki with i - - I  and 1I, where T 
has the constant value T~ and T/ is changing from 
T '̀, i. to T,'. out, This case can be treated according to the 
two-point method described in [4]. For  i = I and II: 

1 l / 1  1 ~  
~ = ~ ~K/.o + Ki.;) .  (32) 

The local overall transfer coefficients must be deter- 
mined with the temperatures T, and T,'~ or Ti',b accord- 
ing to 

O~.~ = 0~(1 - e - A '  K,/K,~. 0.21 ~ 32 )  
(33) 

O},b = O i ( 1 - - e  -AM'Ki/KM'0"78868) 

and (13). 
Equation (33) shows that for the determination of 

the reference temperatures for T' which are needed for 
the calculation of the mean value K~ according to (32), 
this local mean value K~ and the wanted true mean 
value KM must already be known• Thus iterations 
cannot be avoided. One must estimate or take from 
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a previous calculation approximate values of Ki and 
KM in order to determine the reference temperatures 
for T' according to (33). For the first step the ratio 
Ki/KM could be taken as one. 

Thus the true mean overall heat-transfer coefficient 
can also be calculated if the local overall heat-transfer 
coefficient depends on both fluid temperatures. 

The accuracy of this method is as high as that of 
the two-point integration for which the high accuracy 
was proved in similar heat-transfer cases [4, 5]; it need 
not be tested here again. 

3. G E N E R A L  A P P R O X I M A T I O N  M E T H O D  FOR 
ANY F L O W  A R R A N G E M E N T  A N D  C O M B I N E D  

T E M P E R A T U R E  A N D  L E N G T H  EFFECTS 

In practical cases for which a cost-optimized design 
has to be carried out, the special cases treated in the 
previous chapters will not arise very frequently and 
usually not in the pure form of either only length or 
only temperature effects. For cost-optimized design, 
where the flow arrangement changes during the opti- 
mization procedure and where combined length and 
temperature effects may occur, a more general, less 
accurate but simple method is very useful. A simple 
method can take the actual flow arrangements into 
account only approximately. 

Previously, for the calculation of the mean overall 
heat-transfer coefficient and the pressure drop the flow 
arrangement was regarded as countercurrent flow 
[4, 6]. This assumption is reasonable because in most 
cases one tries to be close to pure countercurrent 
flow with its advantageous mean temperature differ- 
ence. However, cases may arise in which this method 
is not accurate enough. Therefore, we extend the 
countercurrent flow method by slight variations to 
allow approximately also for any flow arrangement. 

3.1 Determination of reference temperatures 
3.1.1 Pure counterflow. For pure counterflow the 

reference temperatures of the hot stream ~ and the 
cold stream C' are determined [4, 6] by: 

A T I  = (Tin - Tout) 0"78868 • (Tout- Tin) 0"21132 

0 21132 0 78868 ATn = (Ti. - To.t) " • (Tout- Ti'n) " . (34) 

From the temperature differences and assuming con- 
stant specific heats we find the reference temperatures 
T~ and Ti' with i = I and II. 

Ti - To,, T , ' -  T`;, AT, - IT®u,- E,)  
• (35) 

T` , -  Tout Tout-- Ti', ( Tin -- To, t) - (Tout - Ti',) 

For  ~ = ~'  the righthand term of(35) turns to 0.78868 
or 0.21132, respectively. 

3.1.2 Correction of the reference temperatures for 
other flow arran�ements. With fixed inlet and outlet 
temperatures pure counterflow yields the highest mean 
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temperature difference. For  any other flow arrange- 
ment the difference between the mean temperatures of 
the hot and the cold stream, averaged over the heat- 
transfer area, is smaller. Thus for any other flow 
arrangement the mean temperature of the hot fluid is 
usually lower than in the case of counterflow, and the 
mean temperature of the cold fluid is usually higher. 
This knowledge we apply when introducing a correc- 
tion to the temperatures relevant in pure counterflow: 

t, = T / -  ~,~ 
(36) 

t; = r , ' +  4,; 

where the correction terms ~i and ~Pl are usually both r,~ 
positive values; these terms should disappear in the 
limiting case of pure counterflow. The corrected refer- 
ence temperatures are denoted t~ and tl. ~-= 

o 
As a measure of the deviation of the actual flow ~, 

o_ 
arrangement from the pure counterfiow we take the ~ r2 
mean temperature difference. This difference is needed ~- 
for the design calculations in any case and must be 
obtained from known equations or diagrams according 
to [7] through [16]. 

The corrections ~ and ~'  should decrease the local 
temperature difference AT = T -  T' which would apply 
in the case of an imaginary counterflow heat exchanger 
by such a constant factor that the mean temperature 
difference of the corrected temperatures is that of the 
actual flow arrangement. Then at each point of the 
counterflow heat exchanger and thus also at the 
reference points i = I and II: 

AT~ - (0,+~p;) ATt~ 
- ( 3 7 )  

A T~ A TM,~ 

where the index c is for counterflow and ATta,~ is the 
logarithmic mean value of (Tii. - To~0 and (To~t- Ti'~). 

Equation (37) gives a condition only for the sum 
Oi + ~'~ and the problem now is how to distribute the 
two corrections over the two fluids. The distribution 
should be done so that the mean corrected counter- 
flow temperatures of both fluids are approximately 
equal to the real mean temperatures of both fluids. 
The simplest method of distribution would be to take 
I/Ji = ~ i "  For symmetric flow arrangements as, for 
instance, pure crossflow or co-current flow, this equal 
distribution would be right for ~7 = ~', but for C # ('7' 
probably also tPi # ~'i. Therefore a function of ~7'/(~ 
appears reasonable. 

Considering, for instance, a flow arrangement with 
longitudinal mixing we find, intuitively, that 7 is some- 
where between zero and one (i.e. the correction of the 
stream with the stronger temperature change is stronger 
as well). 
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To find a reasonable value for 7 we consider a most 
disadvantageous case where the corrections are large. 
Equation (37) shows that the corrections ~ and ~i 
(compared to AT3 become relatively highest for 
A T M = 0  and ATM,~ # 0 ,  because then ~i+~01= AT~ 
and the corrected temperatures become equal and lie 
somewhere between T and T'. 

Co-current flow is the arrangement which differs 
furthest from countercurrent flow and presents the 
extreme case for which the correction to be applied 
to countercurrent flow should be valid. 

T=T' T'n 

o o 

Cocurrent" flow Countercurrenf flow 

FIG. 4. Temperatures for cocurrent flow with AT M = 0 and 
for the equivalent countercurrent flow arrangement with 

temperature correction. 

Figure 4 shows the fluid temperatures of an actual 
cocurrent heat exchanger with ATM = 0 (Tout = To'ut) 
and the equivalent countercurrent heat exchanger with 
the corrected temperatures t = t'. As the ratio ~/~ '  
shall be constant along the flow path ~ it can be 
determined by the mean temperatures, integrated over 

TM-- TOn, 
09) 

~' TO,,t- T~ 

where Ton, = To'u, = tM = t~t because ATM = 0. 
Because both temperature curves (counterflow) are 

similar also for changing K 

TM-- To., Ti.-  To., C' 
Y h -  Tin Tout-- ri'. C 

(40) 

where ~ and ~'  are constant or the true mean values 
between the inlet and outlet temperatures [defined 
by (40)]. 

The difference of the mean fluid temperature is given 
by the known equation 

(Ti, - TG) - (To°,- T~',) 
TM-T/~ = (41) 

In T i , -  To'., 

You,- T~. 

From (40) and (41) (with TOn, = Ton,) the mean fluid 
temperatures T~ and Th can be expressed as functions 



1044 

of ~'/~. Introducing these functions into (39) leads 
finally to 

O' 0 '  
l + l n - -  

~,' - 0 ~ (42) 
1 - ~,, + l n  ~,, 

As shown in Fig. 5 (42) can be approximated very 
well by an exponential function according to (38) with 
the exponent 7 = ~. (This exponent can be derived by 
series developments of the logarithmic functions in (42) 
at the point d" = ('7.) 

g- 
o i /  

-2 ~Equati]n(42) 
3 -2 I 

10q C '  
C 

[ I 

2 y=-g- 

I 2 

WILFRIED ROETZEL 

can be calculated according to I-6]. For the hot 
stream ~: 

( e l l ~  ° 3 4 2  
6, = ~]. \ g , )  + - -  

\2-1) + - -  

and for the cold stream 0 ' :  

\ k , , )  + - -  

\ g l l /  + - -  

0'43 

1 
- - + 2 . 3  
a i  

0.1 

I 
- - +  1.9 
a l l  

0.1 

1 
- - +  5.9 t 
a l  

0'43 

1 
- - + 2 ' 3  

FIG. 5, Comparison between equation (42) and 
equation (38) with 7 = ~- 

The inaccuracy of the exponential function for large 
and small values of C'/d" is unimportant for our 
approximation because then also the corrections 
and t)' become small (0 + ~' ~ 0 for 0'/~7 -~ oo or 0). 

Now, combining (37) and (38) with 7 = ~ we find 
(for i = I and 1I) 

1 -ATM/ATM,~ 
Oi = ATi. 

1 -r  {(,~/~,)2/3 
(43) 

1 --ATM/ATM,c 
¢,I= AT,. 

1 q- (~, /{~)2/3 " 

With (43) the reference temperatures h, ttl, t'~ and t'. 
according to (36) can be determined. 

If laminar flow does not occur, the local overall 
transfer coefficients K~ and K ,  can now be calculated 
according to (2) or (4); no length effect is present. 

3.2 Calculation of local laminar heat-tran@,r coefficients 
With laminar flow, however, only (2) can be applied 

together with (3) for the local laminar heat-transfer 
coefficient. The correction 6 for laminar length effect 

(44) 

(45) 

al, 

The original constants 0.690 and 5'332 of (77) in [6] 
have been changed to -} and ~- improving the accuracy 
for mean heat-transfer calculations. (Pressure drop 
calculation is effected weakly; the example Table 3 
in [6] yields also better results with the new constants.) 

Before the local overall heat-transfer coefficient 
according to (2) can be calculated the wrong traditional 
mean value according to (4) must be determined, which 
appears in (44) and (45). 

3.3 The mean overall heat-transfer coefficient and total 
pressure drop 

Once the two local overall heat-transfer coefficients 
have been calculated we find according to the counter- 
flow method [4] the mean value needed for the design: 

KM 2 + " (46) 

For the calculation of the pressure drop for any flow 
arrangements the same considerations are valid as for 
heat transfer and thus with the corrected reference 
temperatures also the total pressure drop can be 
calculated according to [6]. 

For  the hot stream d" 

Apl/ K1 + Ap./  Kn 
Ap = (47) 

1/KI + I/K n 

where Ap~ and Apu are the local total pressure drops 
calculated with the local properties. For  liquids z~p 
according to (47) is the final pressure drop (inlet and 
exit losses are not included and must be added). 

For gases, however, this pressure drop must be 
corrected for pressure dependence of density. Now 
Ap according to (47) is denoted with '~P(in) or Ap(ou,) 
because it had to be determined with the pressure at 
inlet or outlet, respectively (however with tl and tn). 



For gases the final pressure drop is now: 

When p is replaced by p' (47) and 148) can be applied 
also for the cold stream. 

Thus the pressure drop and the true mean overall 
heat-transfer coefficient (needed for calculation of the 
area) can be calculated allowing for changing heat- 
transfer coefficients due to length and temperature 
effects for any flow arrangement for which the mean 
temperature difference can be calculated. The accuracy 
of this general method shall be tested with some 
examples in the following part. 

4. TEST OF THE GENERAL METHOD 

We consider a few limiting cases where either tem- 
perature or length effects are present. 

4.1 Only temperature effects 
In the limiting case of pure counterftow the presented 

general method turns into the known countercurrent 
method [4] which has been tested sufficiently with 
excellent results [4, 5]. We now have to consider cases 
which deviate greatly from the limiting counterftow 
case. 

4.1.1 Pure cocurrentfiow. This example is unrealistic 
with respect to practical application because this case 
would have to be treated according to the special 
cocurrent method [4] and [6]. However, for testing 
purposes this example is very useful because of its great 
deviation from counterflow and because it can be cal- 
culated with a high accuracy according to [4]. 

We imagine the case that a viscous turbulent liquid 
is cooled by a gas. The heat-transfer coefficient of the 
liquid will decrease together with its temperature and 
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the heat-transfer coeffÉcient on the gas side will decrease 
with rising gas temperature. A strong but reasonable 
dependence of K on T and T' could be 

5 . T  2 
K = {49) 

2 1 5 + T '  

which function was assumed for the three cocurrent 
examples. The inlet and outlet temperatures of both 
streams were chosen so that the ratio dT/0' becomes 
1/2, 1 and 2 and so that K according to (491 calculated 
in the conventional way with the arithmetic mean 
wllues of inlet and outlet temperatures becomes equal 
to 100. For the three examples shown in Table 2 the 
mean overall heat-transfer coefficient KM was cal- 
culated according to four different methods. First, 
according to the conventional method with arithmetic 
mean values resulting in KM = 100. Secondly, the flow 
arrangement was regarded as counterflow. Thirdly, 
according to the presented general method where the 
flow arrangement was regarded again as counterflow, 
but the reference temperatures are corrected. Fourth, 
according to the two-point cocurrent method described 
in [4]. For  the calculation of the relative error of each 
method the result of the last special method was re- 
garded as exact (the error of this method is very low, 
as shown by the examples in [4] and [5]). 

The results in Table 2 demonstrate clearly that even 
in very extreme cases with respect to flow arrangement 
and temperature dependence (49) the general method 
yields excellent results compared to tile first two 
methods. Further, one may conclude that omission of 
the stipulated correction of the relerence temperatures 
can lead to a large error. 

4.1.2 One row cros,~f4ow. We now consider similar 
examples, shown in Table 3, for the more rcalistic case 
of crossflow with one row, for which case a special 
method has been dcrived in this paper. For the cal- 
culation of the relative errors of each method again 

Table 2, Test of the general method for heat-transfer coefficients dependent only on temperature. 
Three examples of cocurrent tlow, calculated according to four mcthods 

Inlet Outlet InLet Outlet Inlet Outlet 

T 90 50 85 55 80 60 
T' 20 40 15 45 10 50 

1 2 

KM rel. '~ K~ rel. error ~o error ~, Ku rel. error'~, 

Usual method with 
arithmetic mean wdues 100.00 + 32.9  100-00 + 22.9  10000 + 15.0 
Regarded as counter-flow 
(without correction} 88.44 + 17.5 96.33 + 18.4 10050 + 15.6 
General method, corrected 
counter-flow 74'65 0-80 82"07 + 0"84 89"26 + 2-64 
Two-point cocurrent method 
according to [41 75.25 0 81"38 0 86"96 0 
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Table 3. Test of the general method for heat-transfer coefficients dependent only on temperature. 
Three examples of one row cross-fl0w, calculated according to four methods 

Inlet Outlet Inlet Outlet Inlet Outlet Inlet Outlet 

T 100 40 100 40 110 30 85 55 
T' 0 60 0 60 10 50 0 60 

CIC' 1 1 ½ 2 
K Equation (49) Equation (50) Equation (50) Equation (50) 

KM rel. error ~ KM rel. error % KM rel. error ~o KM rel. error 

Usual method with 
arithmetic mean values 100.00 + 58.1 1 0 0 . 0 0  +58.3 100.00 + 132.9 100,00 + 10-4 
Regarded as counter-flow 
(without correction) 85.88 +35.8 83.04 +31.4 54.67 +27.3 101.31 + 11.8 
General method, corrected 
counter-flow 62"36 - 1.4 62.09 - 1.73 42.08 -2.01 90.87 +0.34 
One row cross-flow method 
according to 2-2 63.24 0 63' 18 0 42.94 0 90.57 0 

the last special method was considered to be exact. In 
the first example with C = O' K was taken according 
t o  (49), and additional iterations were necessary to 
determine the reference temperatures of T'. In the 
examples two, three and four, where the effect of 
changing C/C' was tested, the dependence of K on T' 
was neglected for simplification (or taken into account 
approximately only) by calculating K according to (49), 
however, with a constant mean value T' = 30. 

T 2 
K -  49" (50) 

The results obtained using (50) instead of (49)are very 
similar (see examples one and two) and yield virtually 
the same results. 

Again, the general method yields good results and 
the reference temperature correction can have a decisive 
effect. The results for different ratios C/C' also demon- 
strate that the distribution of the corrections 0 and 0 '  
according to (38) with 7 = ~ has the desired effect. 

4.2 Laminar length effects only 
We consider the cases which have been treated and 

discussed in detail in Section 2.1. 
4.2.1 One stream laminar. In Section 2.1.1 (9) was 

derived for the ratio V. With the same assumptions 
we now derive an equation for V according to (6) using 
the general method described in Section 3. In (6)/~ must 
be substituted according to (4) in which the variable a 
according to (7) must be introduced. The mean value 
K~ has to be calculated using (2), (3), (7), (44) and (46). 
Then we find finally: 

1 1 1 {' 0'215 005 \ 
t51) 

The limiting values of V according to this equation 

compare with those of (9), for a--*0 or oo V = l .  
Table 4 shows other values calculated from (9) and (51), 
respectively. The agreement of both equations is ex- 
cellent. The relative error between both values of V is 
equal to that of the true mean overall heat-transfer 
coefficient KM according to the general approximation 

method. 
Thus the derived 9eneral method is valid for any flow 

arrangement if  one stream is laminar. 

Table 4. Test of the general method for length effect 
and one laminar stream. Comparison between 

equation (9) and equation (51) 

Error (rel.) a V, equation (9) V, equation (51) ,~ 

0-1 0.98044 0.98067 +0-023 
0.2 0.97131 0.97033 -0.101 
0.5 0.96210 0.95980 -0.238 
0.7 0.96124 0.95900 -0.233 
1.0 0.96229 0.96043 -0.193 
2.0 0.96924 0.96849 -0.077 
5.0 0.98190 0.98203 +0.013 

10.0 0.98945 0.98969 +0-024 

4.2.2 Both streams laminar. Corresponding to the 
derivation of (12) in Section 2.1.2 we now derive with 
the general method and in the same way as for one 
laminar stream in the previous section but using, in 
addition, (45): 

1 0.215 0.215 
- - = 1 +  + 
V l+l /a+2"3( l+a)  l+a+2"3( l+l /a)  

0"05 0"05 
+ F 

l + l / a + l ' 9 ( l + a )  l + a + l ' 9 ( l + l / a ) "  
(52) 

This V again has the same limiting value 1 for a --* o9 
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or 0 as V according to (12). Table 5 gives a comparison 3. 
of(12) and (52). The agreement is again excellent. Thus 
with two laminar  streams and any kind of crossflow 
(as could occur in compact  heat exchangers) the general 4. 
method will yield good results. 

Table 5. Test of the general method for length effect 
and two laminar streams. Comparison between 

equation (12) and equation (52) 

V, K Error (rel.) 
equation (12) equation (52) % 

0"1 1 0 . 0  0"96909 0.97075 +0.172 
0.2 5-0 0"95309 0'95339 +0.032 
0'5 2'0 0"93307 0-93073 -0.251 
1.0 1"0 0'92711 0'92388 -0.348 

With pure counterflow and two laminar  streams, for 
which case the general method also would yield (52), 
the correction factor V and KM [see (6)] is slightly too 
high as shown in Fig. 2 for zero wall resistance. The 
general method may yield a K~ which is up to 3.8 per 
cent too high in the most disadvantageous case of 
~L = ~ and w = 0. (Pressure drop is not affected as 
only the ratio of the two local overall heat-transfer 
coefficients is decisive, as discussed in [6].) However, 

pure countercurrent .[tow does not occur frequently in 

practical design. 

With pure cocurrent  flow our  general method would 
yield values of KM which are slightly too low, which is 
obvious for zero wall resistance where V = 1. 

Thus for the practical flow arrangements  where 

cocurrent  flow, countercurrent  flow and crossflow are 
combined (e.g. shell and tube heat exchangers) the 
errors of the cocurrent and countercurrent  streams 
cancel and the general method will yield good results 
also even for the (seldom encountered) case of two 
laminar  streams. 

5. CONCLUSION 

For  all practical purposes the general method de- 
veloped for the thermal  design of a single phase heat 
exchanger gives reliable results and provides a major  
advantage over conventional  methods. 

For  some special cases of crossflow more specific 
methods can be used for the calculation of the mean 
overall heat-transfer coefficient. 
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APPENDIX 

For the integration of (t 1) the following integral must be 
used which can be solved by partial integration and which 
is given, for instance, in [17] p. 94, number 4. 

x " . l n x . d x =  - .  l n x -  +B. (A1) 
n + l  

The integration of (11) can be done as follows. Integrating 
only the first two terms of the sum under the integral gives 

V = (1 +a ) . (1 -3~ .a+2 .a2 ,  I) (A2) 

where 

I = (~2 /3 .1n  1 + doS. (A3) 
,~=o a.~b T//3 " 

By extracting l /a.c~ 1/3 out  of the brackets the logarithm, 
and thus the integral, can be broken down in three integrals 

I = l~+ly+l: (A4) 
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where the first gives 

/~ = - l n a .  q~2/3.dq~ = - } . l n a  (A5) 
=0  

and the second one can be solved according to (AI) with 
x = ¢ and n = 

~ ¢=1 

lx = - ½  ¢2/3.ln¢.dq~ = ~j. (A6) 
d4=O 

The third integral to be solved is 

fo TM I~ = q5213.1n(l +a.¢l/3) ,dq~. (A7) 
=O 

Substituting q~ according to 

x = l + a . ¢  1/3 

gives: 
3 fx=l+a 

I~ = a~. )x= 1 ( x - 1 ) 4 . 1 n x . d x  

W I L F R I E D  ROETZEL 

( A 8 )  

(A9) 

and with the binomial series 

_ 3 I x = l + "  
l ~ -  ~ .  jx= 1 (x '*-4.x3 + 6 . x ~ - 4 . x + l ) . l n x . d x .  (A10) 

This integral can be broken down into five integrals which 
can be solved according to the integral (A1) with n = 4, 3, 2, 
1 and 0. This yields finally: 

3 3 3 1 
1. = - . l n ( l  +a) + 
" 5 - ~  20.a  5 .a  2 

3 3 3 
10.a 3 5.a4+-5-1a~.ln(l+a). (All)  

Substituting in (A4) I~, ly and Ix according to (All), (A6) 
and (A5) and introducing I into (A2) leads to (12) of this 
paper. 

CALCUL D ' U N  ECHANGEUR DE CHALEUR AVEC COEFFICIENTS DE TRANSFERT 
VARIABLES POUR DES ARRANGEMENTS A ECOULEMENTS CROISES ET MIXTES 

R6sum6--Dans des cas particuliers d'6coulements crois6s, on peut calculer le coefficient global de transfert 
thermique en prenant en compte soit les effets de longueur laminaire, soit la d6pendance/~ la temp6rature. 
Pour un Ocoulement laminaire la valeur moyenne peut ~tre calcul6e, en ~coulements /~ cocourant ou /t 
contre-courant, et le r&ultat est valable pour un arrangement quelconque. Dens le cas de deux 
6coulements laminaires, on pr6sente une solution valable pour un arrangement crois6 quelconque. 

On pr6sente une m6thode sp6ciale relative ~ l a  d6pendance du transfert thermique vis /1 vis de la 
temp6rature et aux 6coulements crois6s, pour unseul  rang. Selon cette m6thode, le transfert thermique 
doit fitre calcul6 en deux points s'il d6pend seulement de la temp6rature du fluide dans le tube, et en 
quatre points s'il est fonction des temp6ratures des deux fluides. 

Une m6thode approch6e plus g6n6rale est d6crite pour calculer le coefficient global de transfert et la 
chute de pression globale, m6thode valable pour un arrangement quelconque et des effets combin6s de 
longueur et de temp6rature. Cette approche est d6velopp6e a partir d'une +tude ant+rieure de contre- 
courant pur; le transfert thermique et la chute de pression doivent 6tre calcul6s en deux points. 

La m~thode g6n6rale est test6e sur deux exemples dont on connait les solutions (cas de courants 
crois6s et de cocourant) et un tr6s ben accord est constat~. 

DIE AUSLEGUNG VON KREUZSTROM- UND MISCHSTROM-W~RMEDBERTRAGERN 
BEI VER)~NDERLICHEN W A R M E D U R C H G A N G S K O E F F I Z I E N T E N  

Zusammenfassung--Ftir  spezielle F~ille des Kreuzstroms kann der mittlere W~irmedurchgangskoeffizient 
berechnet werden, wenn entweder die Abh~ingigkeit des Durchgangskoeffizienten vom StrSmungsweg 
oder v o n d e r  Temperatur bekannt ist. Wenn ein Strom laminar ist, kann der mittlere Wiirmedurch- 
gangskoeffizient in gleicher Weise wie ffir Gleich- und Gegenstrom berechnet werden, wobei die 
Ergebnisse fiir jede Art der Str6mungsftihrung gfiltig sind. Fiir den Fall, daB beide Str6me laminar 
sind, wird ein Verfahren angegeben, welches auf jede Art yon Kreuzstrom angewendet werden kann. 

Fiir nur temperaturabh~ingigen W~irmeiibergang und fiir Kreuzstrom mit nur einer Rohrreihe wird 
ein spezielle~ Verfahren angegeben. H~ingt der W~irmeiibergang nur yon der Fluidtemperatur im Rohr 
ab, so ist die Rechnung fiir zwei Punkte durchzufiihren. Sind beide Fluidtemperaturen von Einflu[3, so 
ist eine Rechnung fiir vier Punkte erforderlich. Weiterhin wird ftir die Berechnung des mittleren 
WSrmedurchgangskoeffizienten und den Druckabfall ein allgemein gtiltiges N~iherungsverfahren 
vorgeschlagen, welches fiir jede StrSmungsfi_ihrung und auch bei Weg- und Temperaturabhiingigkeit 
der Koeffizienten anwendbar ist. Des NSherungsverfahren wurde aus einer for reinen Gegenstrom 
entwickelten Methode abgelcitet. Der Wfirmedurchgang und der Druckabfall mul3 fiir zwei Stellen 
berechnet werden. Das Verfahren wurde an verschiedenen, bereits gelSsten Anwendungsf/illen (speziellen 
Formen von Kreuzstrom und Gleichstrom) erprobt, wobei sehr gute ~bereinstimmung festzustellen war. 
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K O H C T P Y K I _ I J A , q  T E F U I O O B M E H H I A K O B  C F I E P E M E H H b l M H  K O D q b q b H H H E H T A M I d  
F 1 E P E H O C A  )251fl C H C T E M  C H O H E P E q H b l M  H C M E I l I A H H b l M  T E q E H H f l M I 4  

Auno'rauna--- B qacTl-lOM c n y , m e  NepeKpeCTnOCO ToKa M O ~ e l  6blTb paccq~aTan CyMMapHbl/~ cpe,aHI4~ 
KO3~qbtlllHeHT T e n n o o 6 M m m ,  K o r a a  , M e e t  MeCTO Ba~l~tH.e n , 6 0  ,~dlHnbl naMHHapHorO rIOTOKa, a , 6 0  
reMflepaTypHo~l 3aBI, ICHMOCTtl. FlpH HaYlH~I~IH TOYlbKO OdXHOFO n a M m l a p u o r o  nOTOKa MO~KHO p a c -  
cqtITaTb cpe~ .ee  3HaqeHt~e KO3qbqbtlUHeHTa Ten:~onepe~a,~H fla~ HpflMOTOqHOFO PI HpOTHBOTOqHOFO 
TeqeHH.q; FIodIyqettHbl~ p¢3y.~bTaT cnpaBe~JqHB ~Ulfl fltO6b~X TeqettH~. B c a y ' m e  ~Byx .~aMHHapHb[X 
TeqeHH~ FIpHBO~HTGfl pemeHHe ;2nfl dItO~bIX crpyKTyD nepeKpeCTHOFO TOKa. 

EcyII4 TeFuIOO6MeH 3aBHCHT TOSlbKO OT TCMnepaTyphl,  TO ~Uqfl cJlyqam HepeKpeCTHOFO TOKa C 
O~HHM p~122OM Tpy6  HpHBO£1HTCfl cueLtHa-rlbHbI~ MeTO~I, pac~4eTa. COF~IaCHO ~atlHOMy MeTO;ly ttCO~XO- 
~tlMO paccqvlTblBaTt~ Ter~aoo6ueH B ;1ByX TOqKaX B c~y~ae  e r o  3aBtlCtlMOCTH TOdlbKO OT TeMHepaTypbl 
MftU2KOGTI'I BHyTpH Tpy6t~t ~t B qeThlpex TOqKaX, ecylt,l OH flBdl.qeTCfl ~yttKH!de~ O6CHX TeMHepaTyp 
MfH~IKOCTH. 

~ l aaee  Ollt4CblBaeTclt 6onee o 6 m . ~  n p , 6 n n > K e u a ~ , ~  MeToJ1 pacqeTa  cpe~lHer'o CyMMapUoFO KOgqb- 
d~HtlHeHTa Terl~lOOSMeHa H CyMMapHOFO n e p e n a , a a  ,aaBJleu,~,  npHMeHfleMOrO ,a .~  nrO6bIX THHOB 
TeqeHH~. ~TO r lpH6nH*eHHe pa3BHTO Ha OCHOBe 6onee paHHerO MeTO~la pacuera  ttHCTO HpOTHBO- 
TOqHOFO Teqeltlllt, i1pl4 9TOM remqOO6MeH . nepena~l  RaBJleHllfi £1,O~q)KHbl paccq~ITblBaTBClt B /1ByX 
TOqKax. 

O6LtlH~ MeTO/2 rlpOBepItflCfl Ha n p u M e p a x ,  nnfl  KOTOpBIX cyI.t tecrgyrOT Ha,ae>KHble p e m e l l ~  
(OCO6ble c n y u a ,  r~epeKpecTHOrO u FIp~IMOTOqHOI-O TeqeHtt~). FIony~teHo xopomee  coBr~aneHue Me*~ly 

TeopHefi H 3KcHepHMeHTOM. 
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