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Abstract—In special cases of crossflow the mean overall heat-transfer coefficient can be calculated, when
either only laminar length effects or only temperature dependences are present. With one laminar stream
the mean value can be calculated as for cocurrent and countercurrent flow and the result is valid for
any flow arrangement. For the case of two laminar streams a solution is presented which is valid for
any crossflow arrangement.

For only temperature-dependent heat transfer and crossflow with only one row a special method is
presented. According to this method heat transfer must be calculated at two points if it depends only
on the fluid temperature inside the tube, and at four points if it is a function of both fluid temperatures.

Further, a more general approximation method is described for the calculation of the mean overall
heat-transfer coefficient and the overall pressure drop, which is valid for any flow arrangement and
combined length and temperature effects. This approach was developed from a previous pure counterflow
method; the heat transfer and pressure drop must be calculated at two points.

The general method was tested with examples for which reliable solutions (special crossflow cases

and cocurrent flow) are available and very good agreement was obtained.

NOMENCLATURE Grecek symbols

A, dimensionless group, defined by (16); oA, local heat-transfer coefficient (of hot stream);

B, integration constant; B. v, exponents;

a, dimensionless group, defined by (7); A, finite difference;

C, mass flow rate times specific heat (of the hot S, local flow length correction (of hot stream);

fluid); O, dimensionless temperature (of hot stream);

F, total heat-transfer area; g, dimensionless flow path of hot stream,

£, variable, defined by (25); defined by (1);

g, variable, defined by (26); o, dimensionless flow path of cold stream,

I, variable representing an integral; defined by (1);

K, local overall heat-transfer coefficient; W, reference temperature correction (of hot

L, flow length (of hot stream) in one pass; stream).

l, variable flow length calculated from the tube .

inlet (flat profiles); Subscripts .

. exponent; 0, & = 0, inlet of hot stream;

P, pressure (of hot stream); 1, é = 1, outlet of hot stream;

T, temperature (of hot stream); ¢, inlet of cold stream, = 0;

L, corrected reference temperature, defined ¢, outlet of COld_ stream, = 1; . . .

by (36); III, reference pmpts for Gaussian integration

v, overall flow length correction factor, defined over &-co-ordinate;

by (6): R counter for I and II; .

W, wall resistance: a,b, reference points for Gaussian integration

X, dummy variable. over ¢-co-ordinate;

c, counterflow;

- wd at ] Hoat T f‘ < in, out, at inlet or outlet, respectively;
pobiined e cnle Hon o nd b, detemined only with he presur of il
Johannesburg, South Africa. (out), or outlet, respectively;

tPresent address: Bayer AG, Verfahrenstechnik R150, L, laminar;

415 Krefeld 11, Germany. M, correct mean value for heat transfer;
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X, y, z, Identifiers for distinction of different
integrals.
Superscripts

’

, cold stream, for one row crossflow unmixed
or outside the tubes;

mean value through adiabatic mixing;

area average mean value at constant tem-
perature (only length effect included).

w e |

1. INTRODUCTION

FoR THE cost-optimized design of heat exchangers with
the computer [1] as well as for manual design cal-
culations reliable but fast calculation methods for the
mean overall heat-transfer coefficient and the overall
pressure drop are required because, on the one hand,
the conventional simple method using mean values of
temperatures as reference temperatures can lead to
undesirable errors in design and, on the other hand,
numerical stepwise integrations are prohibitively time
consuming.

Various methods for estimating the mean heat-
transfer coefficient [2-5] and the overall pressure
drop [6] have been presented taking into account the
variation of the heat-transfer coefficients and the
differential pressure drop with temperature and/or
length of flow path.

However, considering the temperature effect, all
methods were derived for pure cocurrent or counter-
current flow. In air-cooled heat exchangers, as applied
frequently nowadays, the fin tube bundles are usually
in crossflow and the counterfiow methods are then
only approximations, with the accuracy increasing with
the number of passes. Similar considerations are valid
also for shell and tube heat exchangers where true
countercurrent flow is only a limiting case.

The current paper covers the gap between pure
countercurrent flow and cocurrent flow and first some
special cases of crossflow are considered.

2. CROSSFLOW WITH HEAT-TRANSFER COEFFICIENTS
VARYING WITH EITHER TEMPERATURE
OR LENGTH OF FLOW PATH
We consider a crossflow heat exchanger as shown
in Fig. 1. The dimensionless flow paths of the hot
stream C flowing inside the tubes in air coolers and of
the cold stream " are, respectively,

I
)
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The local overall heat-transfer coefficient
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= T hwde,
K « o
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F1G. 1. Dimensionless flow

paths ¢ and ¢ and dimen-

sionless heat-transfer area
“1” for crossflow.

where each resistance is related to the same area. The
heat-transfer coefficients « and o are changing with
both temperature and length of flow path but in many
cases only one of both effects is decisive. For turbulent
flow (and radiation) the temperature dependence is
important but the flow length effect can be neglected
[4]. On the other hand, with laminar flow the tem-
perature effect is weak whereas the flow length effect
is most important and the local heat-transfer coefficient
can then be expressed by

7, 2 T =y

d

_ o]
d) l/3___uL.§

3

Wi Wl

where in the actual case 4; and 4; are functions of
the fluid and wall surface temperatures.

According to the conventional method one calculates
the mean overall heat-transfer coefficient with the area
average heat-transfer coefficients (arrived at by inte-
gration at constant wall and fluid temperature) which
are obtained from the usual heat-transfer equations.

1 1+ N 1

—=—4+Ww+—

K g a
with subscript L for the alphas in laminar flow. The
true mean overall heat-transfer coefficient K,,, how-
ever, needed for the design of a crossflow heat ex-
changer is (for constant € and ()

$=1 re=1
KM=j j Kdgde. 5)

¢=0 J&=0

4

The mean value K, shall be determined for some
special cases.

2.1 Only laminar length effects

We consider the case that 4, 4; and all other
resistances are constant and thus in (5) K is only a
direct function of ¢ and/or ¢ according to (2) and (3).
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Asin [4] and [S] we introduce the ratio
K

4 (6)
2.1.1 One stream laminar. When the hot stream C is
inlaminar flow o in (2) must be replaced by «; according
to (3). In (5), substituting K according to (2) and
introducing (5) and (4) into (6) gives, with the dimen-
sionless group
d
a=y (N
the following integral (the integration over ¢, (5), gives
the factor one}:
l+a

e=1

Integration gives [6]:

V=1 1 4 8 2.In{ 1 3 9
-—( +a) —§a+§.a .n +% . ()

For a— o and a— 0 the correction V — 1 as ex-
pected from (8).

For the other case that €’ is laminar @ in (9) must
be replaced by a’ according to (7) with &, instead of &y .

The correction factor V according to (9) is equal
to that of cocurrent, countercurrent and mixed parallel-
countercurrent flow derived by Peters [5]. In contra-
diction to Peters’ opinion [5], the correction factor is
also exactly true for crossflow, as shown by our
derivation.

The integration according to (5) could be done over
separate partial areas A¢, where in each A¢—¢ strip
the flow direction can be selected arbitrarily and the
same result would be obtained as given by (9). Thus
(9) is valid exactly for crossflow with any number of
passes and any but equal number of rows (of equal
tube diameter and length) in each pass where the local
d;, or d&p is constant over the heat-transfer area.
Equation (9) is exact also for any flow arrangement
where d; or d; in each tube section through which
the laminar stream flows parallel or in series has the
same value.

For cocurrent flow (9) is also valid when both
streams are laminar; then one has to consider the sum
of both local laminar heat-transfer resistances as one
laminar heat-transfer resistance. For crossflow, how-
ever, two laminar streams have to be treated in the
following way.

2.1.2 Both streams laminar and zero wall resistance.
In the same way as leads to (8) but introducing both
laminar heat-transfer coefficients with zero wall re-

sistance:
b=1 fe=1 2
5(1+a)
V= — ~ _.d¢.d 10
L=0L—o g 4a.¢' ¢.de 10
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where now a = 1/a’' because w = 0. Exchanging ¢ and &
and by replacing a with 4’ shows that V is equal for
aor @ = 1/a, respectively.

Integrating over ¢ from O to 1 with constant ¢ gives
according to (9)
#=1

V:(H—a).J

¢=0

[

+2a2.¢2/3.ln<1+ﬁ>}.d¢. 11

Theintegration over ¢ from 0 to 1 gives (see Appendix):

6 3
V=——_

+1 +6( 2+a%).In( 1 :
=573 a E 5a a’).in +a
6 (1 1 6 t

Equation (12) is symmetric for @ and 4 = 1/a. For
a—0 or a— o (12) yields V = 1. As in the case of
one laminar stream the twofold integration can be
done over separate sections A¢ or (and) A¢, where
again the flow direction can be inverted in individual
strips leading to (12). This equation is valid for any
kind of crossflow provided the local values of %, and
d; are constant over the heat-transfer area and the
flow directions of both fluids are perpendicular to
each other.

1 ¥ L) i
Istream laminar, any
flow arrangement,
equation (9)

' l

Cross-flow,
\,equofion (12)

///

A
1/
"

v 094
0-82 2 steams
laminar,
W=
0-9C 0
Countercurrent
0-88 ]  flowl5]
[o}]] 02 o5 | 2 5 10

a

FiG. 2. Correction factor V = K,;/K for laminar
flow length effect as function of a = (4, /K) — 1.

Figure 2 shows (9) and (12) and also the correspond-
ing correction factor for pure counterflow and zero
wall resistance from Peters [5]. The correction factor
for two laminar streams and zero wall resistance for
crossflow lies between the corresponding factor for
counterflow and that of cocurrent flow (V=1 for
w=0).
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2.2 Temperature effects only; one-row crossflow arrange-
ment

Here we must distinguish between different crossflow
arrangements and we consider the rather uncompli-
cated and, with respect to mean temperature difference,
most disadvantageous case of one row one pass.

In air-cooled fin tube crossflow heat exchangers a
hot liquid is usually inside the tubes. The fluid in the
tubes is considered to be completely mixed in any cross
section. T is the temperature of the mixed fluid.
T’ is the temperature of the unmixed fluid (usually
cold air) outside the tubes. We now introduce the
dimeunsionless temperature of the mixed fluid

O= - " (13)

Replacing the variable temperatures T and © in (13)
by T’ and ©’ gives the dimensionless temperature of
the unmixed fluid.

The dimensionless mean temperature difference is:

(14)

The change of temperatures along the flow paths is
shown qualitatively in Fig. 3.

8\
|
Fi6. 3. Distribution of the dimensionless
temperatures © and @ over the dimen-

sionless heat-transfer area for one row
crossflow.

For the mixed fluid C at the inlet ¢ =0 and
® =0, =1. At the outlet { =1 and © = ©; with
T = T,,.. For the unmixed fluid " at the inlet ¢ =0
and @ = @}_, = 0. At the outlet locally (changing
with &) ¢ = land ®' = ®}_ with T' = T;,,. Consider-
ing the adiabatic mixing outlet temperature which is
usually given ¢ =1 and @' = @_; with T' = T,,,,.

2.2.1 Local heat transfer depending only on the tem-
perature of the mixed fluid. With air-cooled heat ex-
changers the temperature dependence of the liquid
inside the tubes is more decisive than that of the air
outside the fin tubes. Therefore (and also for simpli-
fication), we first consider the case that the local overall
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heat-transfer coeflicient is only a function of the tem-
perature T or ©, respectively. Later in this paper the
method is extended to allow also for variation with T".

We make the reasonable simplifying assumption that
¢ and €' are independent of temperature.

2.2.1.1 Equation for the true mean overall heat-transfer
coefficient—The heat which is transferred through the
small area F.d¢

—C.d0 =(.0,.,.dé =K. F.d¢. -1

1

(15)

n#
0-0)-,

where K is a function only of ®. From the middle and
righthand part of (15) ®4-; can be expressed as a
function of @ and A, the latter defined by

K.F
A=——. 16
v (16)
Substituting accordingly in (15) gives
~C.dO=C(".0.(1—e"4).dE 17

Solving for C'/C.d¢, introducing In® as a variable
[4], [6] and integrating from £ =0 to 1 and © from
1 to @, gives:

(18)

Am

¢ F_el dIn®

1
C. AZ_IHGI.F.

oy 1-—e¢
This equation defines Ay as the true mean value over
the total area F, determined according to (16) with
the true mean value of the overall heat-transfer co-
efficient Ky, [according to (5)].

In a design procedure the mean value A, is given
because ©,, ¢’ and C are given. From the first and

last parts of (18) we find by solving for Ay

¢
AM: —ln[l‘i‘aln@l}

On the other hand, a total heat balance gives
O

ABy
Substituting Ay, in (19) according to (20) gives the

known [7], [8] equation for the mean temperature
difference

(19)

Ay

(20)

—0,-,

In] 1 Cl@
n+z;.n1

which s needed for the calculation of the heat-transfer
area. The corresponding true mean value K, we have
to determine with the middle part of (18) by substituting
A according to

A@y = 21)

K
A=Ay —

K, (22)
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and integrating numerically with an estimated value
of Ky, the true value of 4) and the temperature
dependent changing value of K. If one has estimated
the true value of Ky, the integration fulfils (18). This
trial and error method is very complicated and time
consuming and a faster method is derived below.

2.2.1.2 Integration using a two-point Gauss method —
We can obtain the first simplification by using the
two-point integration method of Gauss, which method
integrates exactly a polynomial function of third degree.
According to [4] and [6], (18) becomes

! : : + : (23)
l—e M 2\1—e 4 | An

where 4, and A; must be evaluated according to (22)

with K; and Kj;. These reference values of the local

overall heat-transfer coefficient must be determined
with the reference temperatures Ty and Ty according to

_ 0-21132
®l - ®1

@, = O 78868 (24)

and (13). Now one can find the wanted value Ky in
Apand Ay by estimating Ky, until (23) is fulfilled.

However, the following iterative method is far better.
It was found that (23) is also fulfilled with good
approximation when A, 4; and Ay are multiplied
with a factor close to one. This fact is applied in the
following method where Ay, 4; and Ay are multiplied
by the ratio Ky /K. Ky is an estimated value of Ky.
Multiplying 4; and A, with the ratio Ky /Ky gives
A and A¥. The values K, cancel by this multiplication
and A} and Af must be determined according to (22)
with the estimated value K instead of K, and the
true values of A, and K; or Kj. Now the r.h.s. of (23)
can be calculated with A¥ and A} yielding the mean
value on the Lhs. Af = Ay . Ky/Kgf. By the multi-
plication with the ratio Ky, /K5 K, disappeared on the
r.hs. and appeared on the Lhs. in A%. Solving for
Ky gives an improved value of K3¥ and the procedure
can be repeated. The convergence is very good.

2.2.1.3 Non-iterative approximation for the two-point
mean value—In order to find a good approximate
value Kjf to start with or eventually to bypass the
iteration, the following approach was derived.

1041

If one could find a function of A represented by
the variable g which is a linear function of f
_ 1
S

T (25)

then in analogy to (23) one could form the mean value
gu of Ay from the reference values gy and gy of A;
and Ay, resulting in the same Ay, as by (23).

We now assume that the function

()

is approximately a linear function of f. If we now
form the mean value of g; and gy, the unknown area F
and the heat capacity €’ in 4 [see (16)] cancel and

(e =L ()]

We now have to find a suitable value of f.
Close to Ay the linearity between f and g is
fulfilled, if

(26)

27

df df
... -
dg Ay dg Ay +AA
or (after introducing the variables A) if
@A, gddl,
(df/dA)AM +AA (dg/dA)AM + AA.

Replacing f and g according to (25) and (26) gives:
Ay +AA (| o= Au=BA)2 ALV
e (1—e ) =<AM+ A)i 0

(e A

Am
For the limiting case A4 — 0 the following equation
can be derived from (30):

Ay 1
B=dy Sy,

M- A (31
For Ay — o0 fi = Ay —land for Ay —»0(C' - w)p = 1.
In the latter limiting case T” is constant and this cross-
flow method turns into the known cocurrent or
countercurrent method [4].

The accuracy of using (27) and (31) is illustrated by
Table 1. The calculated examples demonstrate clearly
that the derived approach yields good approximate

Table 1. Validity of the approach using equations (27) and (31) (or f = 1)

Au.s .

A An equation (23) equation (31)

02 04 0-26647 1-0118

1-0 20 1-31055 1-2784

50 10-0 568312 47219
250 50-0 2569315 24:6932

01 1-0 0-18083 1-0054

1-0 10:0 1:48982 1-3569

Ap(A = K), Error (rel) Error for
equation (27) (%) b o:/
Pt
0-26649 +0-007 +0-074
1-31283 +0-174 +1-738
574514 +1-091 +17:306
2571170 +0-072 +29:736
018143 +0-335 +0:547
1-61465 +8:378 +22:040

HMT Vol. 17. No. 9—F
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values of K,,. In almost all practical applications these
approximate values will be sufficiently accurate. Par-
ticularly when a computer is used one or two iterations
should be done with this approximate value of Ky,
just to make sure.

2.2.1.4 Summary of procedure—The true mean over-
all heat-transfer coefficient can be calculated, if the local
overall transfer coefficient is a function only of the
temperature T of the mixed stream (inside the tubes
of one row) and if the heat capacities of both streams
are constant.

From the known inlet and outlet temperatures first
the dimensionless outlet temperature of the mixed
stream @), is calculated according to (13) with T = T,,,.
Then the dimensionless reference temperatures ©; and
®, according to (24) and the real temperatures T; and
T according to (13) with T = Tj or Ty, respectively, are
determined. Now the two local overall heat-transfer
coefficients K; and K are calculated using the reference
temperatures T; and Tj; and (2).

The mean value A, is calculated according to (19),
the exponent § according to (31) and the mean value
K, according to (27). K,, thus obtained is a good
approximate value of the wanted true mean overall
heat-transfer coefficient. Taking this value as Kj¥ it
can still be improved by iterations described in
section 2.2.1.2 using (22) and (23).

2.2.2 Local heat-transfer coefficient depending on both
fuid temperatures. The method described above can
be extended easily to the case that the local overall
heat-transfer coefficient is a function also of the tem-
perature T’ of the unmixed stream (outside the fin
tubes).

Instead of the constant values K; and Ky which were
independent of T’ and ¢, we now have to introduce
the true mean values K; with i =1 and II, where T
has the constant value T; and T; is changing from
T in to T{ o This case can be treated according to the
two-point method described in [4]). For i = I and Ii:

1_1 1 4 1
K 2\Ki. Kis)

The local overall transfer coefficients must be deter-
mined with the temperatures T; and T;, or T, accord-
ing to

(32)

®é,a — ®1(1 _e—AM.K,-/KM.O-Zl 132)

@; p = ®L(1 __e—AM.K,-/KM.O-78868)

33)

and (13).

Equation (33) shows that for the determination of
the reference temperatures for T’ which are needed for
the calculation of the mean value K; according to (32),
this local mean value K; and the wanted true mean
value K, must already be known. Thus iterations
cannot be avoided. One must estimate or take from
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a previous calculation approximate values of K; and
Ky in order to determine the reference temperatures
for T’ according to (33). For the first step the ratio
K;/K, could be taken as one.

Thus the true mean overall heat-transfer coefficient
can also be calculated if the local overall heat-transfer
coefficient depends on both fluid temperatures.

The accuracy of this method is as high as that of
the two-point integration for which the high accuracy
was proved in similar heat-transfer cases [4, 5]; it need
not be tested here again.

3. GENERAL APPROXIMATION METHOD FOR
ANY FLOW ARRANGEMENT AND COMBINED
TEMPERATURE AND LENGTH EFFECTS

In practical cases for which a cost-optimized design
has to be carried out, the special cases treated in the
previous chapters will not arise very frequently and
usually not in the pure form of either only length or
only temperature effects. For cost-optimized design,
where the flow arrangement changes during the opti-
mization procedure and where combined length and
temperature effects may occur, a more general, less
accurate but simple method is very useful. A simple
method can take the actual flow arrangements into
account only approximately.

Previously, for the calculation of the mean overall
heat-transfer coefficient and the pressure drop the flow
arrangement was regarded as countercurrent flow
[4, 6]. This assumption is reasonable because in most
cases one tries to be close to pure countercurrent
flow with its advantageous mean temperature differ-
ence. However, cases may arise in which this method
is not accurate enough. Therefore, we extend the
countercurrent flow method by slight variations to
allow approximately also for any flow arrangement.

3.1 Determination of reference temperatures

3.1.1 Pure counterflow. For pure counterflow the
reference temperatures of the hot stream C and the
cold stream €’ are determined [4, 6] by:

ATy = (Tiy = T 8508 Ty — Tip) 21122
ATy = (T = Tas)® 21132 (T = Ti) 78868

out

(34)

From the temperature differences and assuming con-
stant specific heats we find the reference temperatures
T;and T; with i = I and II.

T-Tw _ T -T; AT —(Tou—Ti)

=— - = - . (3%)
’Ti _’Tou( ’I;)u(_Tin (Tin—nut —(’I—Z)UQ-T’)

For C = C' the righthand term of (35) turns to 0-78868
or 0-21132, respectively.

3.1.2 Correction of the reference temperatures for
other flow arrangements. With fixed inlet and outlet
temperatures pure counterflow yields the highest mean
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temperature difference. For any other flow arrange-
ment the difference between the mean temperatures of
the hot and the cold stream, averaged over the heat-
transfer area, is smaller. Thus for any other flow
arrangement the mean temperature of the hot fluid is
usually lower than in the case of counterfiow, and the
mean temperature of the cold fluid is usually higher.
This knowledge we apply when introducing a correc-
tion to the temperatures relevant in pure counterflow:

=T~y

36
= Ti+ Ui o

where the correction terms ; and ; are usually both
positive values; these terms should disappear in the
limiting case of pure counterflow. The corrected refer-
ence temperatures are denoted ¢; and ;.

As a measure of the deviation of the actual flow
arrangement from the pure counterflow we take the
mean temperature difference. This difference is needed
for the design calculations in any case and must be
obtained from known equations or diagrams according
to [7] through [16].

The corrections ¥ and ' should decrease the local
temperature difference AT = T— T’ which would apply
in the case of an imaginary counterflow heat exchanger
by such a constant factor that the mean temperature
difference of the corrected temperatures is that of the
actual flow arrangement. Then at each point of the
counterflow heat exchanger and thus also at the
reference points i = I and II:

AL-WityD) _ ATy
AT;

T ATy,

where the index ¢ is for counterflow and AT,  is the
logarithmic mean value of (T}, — T,,) and (T, — T;,)-

Equation (37) gives a condition only for the sum
Wi+ and the problem now is how to distribute the
two corrections over the two fluids. The distribution
should be done so that the mean corrected counter-
flow temperatures of both fluids are approximately
equal to the real mean temperatures of both fluids.
The simplest method of distribution would be to take
V; = ;. For symmetric flow arrangements as, for
instance, pure crossflow or co-current flow, this equal
distribution would be right for ¢ = ¢’, but for € # ¢’
probably also \; # ;. Therefore a function of C'/C
appears reasonable.

(6
Vi E)'

Considering, for instance. a flow arrangement with
longitudinal mixing we find, intuitively, that y is some-
where between zero and one (i.e. the correction of the
stream with the stronger temperature change is stronger
as well).

(37)

(38)
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To find a reasonable value for y we consider a most
disadvantageous case where the corrections are large.
Equation (37) shows that the corrections ; and ;
(compared to AT;) become relatively highest for
ATy =0 and ATy #0, because then y;+yi=AT;
and the corrected temperatures become equal and lie
somewhere between T and T".

Co-current flow is the arrangement which differs
furthest from countercurrent flow and presents the
extreme case for which the correction to be applied
to countercurrent flow should be valid.

T ¥ T
r
2
2 T=T’ ret
; / 7;ut T 7
b v t out
g Tow ™ —
QE) 7\.n 4 o o
= in
o] ! 0 14
3 ¢

Cocurrent flow Countercurrent flow

F1G. 4. Temperatures for cocurrent flow with ATy, = 0 and
for the equivalent countercurrent flow arrangement with
temperature correction.

Figure 4 shows the fluid temperatures of an actual
cocurrent heat exchanger with ATy =0 (T, = Ty
and the equivalent countercurrent heat exchanger with
the corrected temperatures ¢t = t'. As the ratio y/y/
shall be constant along the flow path & it can be
determined by the mean temperatures, integrated over &

£ _ TM_ 7;ut
l//, To,ut_ TI\ZI

(39)

where T,,, = Ty, = ty = ty because ATy, = 0.
Because both temperature curves (counterflow) are
similar also for changing K

TM_ nul _

To—Tow €
M= (40)
TA’/I - T;;) out ’I;:’l C

where € and €' are constant or the true mean values
between the inlet and outlet temperatures [defined
by (40)].

The difference of the mean fluid temperature is given
by the known equation

(T;n - ’I;),ut) - (nu(_ ’I—;x,\)
TM_TA,'l = ; .
n T;n_ T(‘)ut
’Elut_ T;

(41)
!

From (40) and (41) (with T, = T,,) the mean fluid
temperatures Ty and Ty can be expressed as functions
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of C'/C. Introducing these functions into (39) leads
finally to

l—€+l ¢

v crte
v *)

1—— +]l’lf

¢ o

As shown in Fig. 5 (42) can be approximated very
well by an exponential function according to (38) with
the exponent y = $. (This exponent can be derived by
series developments of the logarithmic functions in (42)
at the point C = (")

[ T
Equation (42)z(
2

L
> 7r
J%quaﬁon (38),
0 M y= 27
3

. /J
-2 Equation (42}
-3 l ‘ -
-3 -2 -1 o] 1 2 3
¢
| —=
0g

F1G. 5. Comparison between equation (42) and
equation (38) with y = 3.

The inaccuracy of the exponential function for large
and small values of ¢’/C is unimportant for our
approximation because then also the corrections
and ’ become small (y +y" — 0 for ¢'/C = oo or 0).

Now, combining (37) and (38) with y = % we find
(for i = T and 1I)
1—ATy/ATy.
= AT, - 0
l// 1+(C/C!)Z/3 (43)
1~ ATy /ATy
(= AT MM
v L+ (C/C)P

With (43) the reference temperatures ¢y, ty, t; and ty
according to (36) can be determined.

If laminar flow does not occur, the local overall
transfer coefficients K; and K,; can now be calculated
according to (2) or (4); no length effect is present.

3.2 Calculation of local laminar heat-transfer coefficients

With laminar flow, however, only (2) can be applied
together with (3) for the local laminar heat-transfer
coefficient. The correction J for laminar length effect
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can be calculated according to [6]. For the hot

stream C:
Ry\"2 043
(S = 2. T“ +
=3 ( 5 1

—+23
ay
R \0-092 01 (44)
5y = %(KT"> +
: —+19
ayn
and for the cold stream C":
ot (B
\K 1
! —+19
“ (45)
S KI 0-342 N 043
n=3. KH 1 .
— 423
Ay

The original constants 0:690 and 1-332 of (77) in [6]
have been changed to % and % improving the accuracy
for mean heat-transfer calculations. (Pressure drop
calculation is effected weakly; the example Table 3
in [6] yields also better results with the new constants.)

Before the local overall heat-transfer coefficient
according to (2) can be calculated the wrong traditional
mean value according to (4) must be determined, which
appears in (44) and (45).

3.3 The mean overall heat-transfer coefficient and total
pressure drop

Once the two local overall heat-transfer coefficients

have been calculated we find according to the counter-

flow method [4] the mean value needed for the design:

1_1 1+1
Ky 2|K KuJ

For the calculation of the pressure drop for any flow
arrangements the same considerations are valid as for
heat transfer and thus with the corrected reference
temperatures also the total pressure drop can be
calculated according to [6].

For the hot stream €

Ap = A_P;/Kl +Apu/Ky
1/Ki+1/Ky

where Apy and Apy are the local total pressure drops
calculated with the local properties. For liquids Ap
according to (47) is the final pressure drop (inlet and
exit losses are not included and must be added).

For gases, however, this pressure drop must be
corrected for pressure dependence of density. Now
Ap according to (47) is denoted with Ap,y or Apyy
because it had to be determined with the pressure at
inlet or outlet, respectively (however with ¢, and ty).

(46)

(47)
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For gases the final pressure drop is now:

2Apan '
Ap: pm|:1_<] _¥p(m)> j|
Pin
2A 1/2
= rm[(l +7 ﬂ°—“”> - 1].
pnut

When p is replaced by p' (47) and (48) can be applied
also for the cold stream.

Thus the pressure drop and the true mean overall
heat-transfer coefficient (needed for calculation of the
area) can be calculated allowing for changing heat-
transfer coefficients due to length and temperature
effects for any flow arrangement for which thc mean
temperature difference can be calculated. The accuracy
of this general method shall be tested with some
examples in the following part.

(48)

4. TEST OF THE GENERAL METHOD

We consider a few limiting cases where either tem-
perature or length effects are present.

4.1 Only temperature effects

In the limiting case of pure counterflow the presented
general method turns into the known countercurrent
method [4] which has been tested sufficiently with
excellent results [4, 5]. We now have to consider cases
which deviate greatly from the limiting counterflow
case.

4.1.1 Pure cocurrent flow. This example is unrealistic
with respect to practical application because this case
would have to be treated according to the special
cocurrent method [4] and [6]. However, for testing
purposes this example is very useful because of its great
deviation from counterflow and because it can be cal-
culated with a high accuracy according to [4].

We imagine the case that a viscous turbulent liquid
is cooled by a gas. The heat-transfer cocfficient of the
liquid will decrease together with its temperature and
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the heat-transfer coefficient on the gas side will decrease
with rising gas temperature. A strong but reasonable
dependence of K on T and T’ could be

5.7
K="~ (49)

215+ T
which function was assumed for the three cocurrent
examples. The inlet and outlet temperatures of both
streams were chosen so that the ratio €/C' becomes
12, 1 and 2 and so that K according to (49) calculated
in the conventional way with the arithmetic mean
values of inlet and outlet temperatures becomes equal
to 100. For the three examples shown in Table 2 the
mean overall heat-transfer cocfficient K,, was cal-
culated according to four different methods. First,
according to the conventional method with arithmetic
mean values resulting in Ky = 100. Secondly, the flow
arrangement was regarded as counterflow. Thirdly,
according to the presented general method where the
flow arrangement was regarded again as counterflow,
but the reference temperatures are corrected. Fourth,
according to the two-point cocurrent method described
in [4]. For the calculation of the relative error of each
method the result of the last special method was re-
garded as exact (the error of this method is very low,
as shown by the examples in [4] and [5]).

The results in Table 2 demonstrate clearly that even
in very extreme cases with respect to flow arrangement
and temperature dependence (49) the general method
yields excellent results compared to the first two
methods. Further, one may conclude that omission of
the stipulated correction of the reference temperatures
can lead to a large error.

4.1.2 One row crossflow. We now consider similar
cxamples, shown in Table 3, for the more realistic case
of crossflow with one row, for which case a special
method has been derived in this paper. For the cal-
culation of the relative crrors of each method again

Table 2. Test of the general method for heat-transfer coefficients dependent only on temperature.
Three examples of cocurrent flow, calculated according to four mcthods

Inlet Outlet Inlet Outlet Inlet Qutlet
T 90 50 85 55 80 60
T 20 40 15 45 10 50
¢i¢ 4 1 2
Ky rel. error %, Ky rel.error 9, Ky,  rel error %
Usual method with
arithmetic mean values 100-00 +329 100-00 +22:9 100-00 +150
Regarded as counter-flow
(without correction) 88-44 +17-5 96-33 + 184 100-50 + 156
General method, corrected
counter-flow 74-65 —0-80 82-07 +0-84 89-26 +2-64
Two-point cocurrent method
according to [4] 75:25 0 81-38 0 8696 0
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Table 3. Test of the general method for heat-transfer coefficients dependent only on temperature.
Three examples of one row cross-flow, calculated according to four methods

Inlet Outlet Inlet Outlet Inlet Outlet Inlet Outlet
T 100 40 100 40 110 30 85 55
T 0 60 0 60 10 50 0 60
/¢ 1 1 3 2
K Equation (49) Equation (50) Equation (50) Equation (50)
Ky rel. error®, Ky  rel. error %, Ky rel. error %, K, rel error 9
Usual method with
arithmetic mean values 100-00 +581 100-00 + 583 100-00 +1329 100-00 +104
Regarded as counter-flow
(without correction) 8588 + 358 83-04 +314 5467 +27-3 10131 +11-8
General method, corrected
counter-flow 6236 —1-4 62:09 - 173 42-08 -2:01 90-87 +0-34
One row cross-flow method
according to 2:2 63-24 0 6318 0 42:94 0 90-57 0

the last special method was considered to be exact. In
the first example with ¢ = ¢’ K was taken according
to (49), and additional iterations were necessary to
determine the reference temperatures of T'. In the
examples two, three and four, where the effect of
changing C/C” was tested, the dependence of K on T’
was neglected for simplification (or taken into account
approximately only) by calculating K according to (49),
however, with a constant mean value T" = 30.
TZ
K= R
The results obtained using (50) instead of (49) are very
similar (see examples one and two) and yield virtually
the same results.

Again, the general method yields good results and
the reference temperature correction can have a decisive
effect. The results for different ratios C/C' also demon-
strate that the distribution of the corrections y and
according to (38) with y = £ has the desired effect.

(50)

4.2 Laminar length effects only

We consider the cases which have been treated and
discussed in detail in Section 2.1.

42.1 One stream laminar. In Section 2.1.1 (9) was
derived for the ratio V. With the same assumptions
we now derive an equation for V according to (6) using
the general method described in Section 3. In (6) R must
be substituted according to (4) in which the variable a
according to (7) must be introduced. The mean value
K has to be calculated using (2), (3), (7), (44) and (46).
Then we find finally:

1_1+ 1 [ 0215 . 0-05 5
V. 1+a\l/a+23  la+19)

The limiting values of V according to this equation

compare with those of (9), for a—»0 or 0 V=1
Table 4 shows other values calculated from (9) and (51),
respectively. The agreement of both equations is ex-
cellent. The relative error between both values of V is
equal to that of the true mean overall heat-transfer
coefficient K, according to the general approximation
method.

Thus the derived general method is valid for any flow
arrangement if one stream is laminar.

Table 4. Test of the general method for length effect
and one laminar stream. Comparison between
equation (9) and equation (51)

Error (rel)

a V, equation (9) V, equation (51) o
01 0-98044 098067 +0-023
02 097131 097033 ~0-101
05 096210 095980 —0-238
07 096124 0-95900 -~0-233
10 096229 096043 —0-193
2:0 096924 0-96849 —0-077
50 0-98190 0-98203 +0:013
100 098945 098969 +0-024

4.2.2 Both streams laminar. Corresponding to the
derivation of (12) in Section 2.1.2 we now derive with
the general method and in the same way as for one
laminar stream in the previous section but using, in
addition, (45):

s 0215 . 0215
Vo 1+ la+23(1+a)  1+a+23(1+1/a)
0-05 005

(52)

.
1+1/a+19(1+a) l+4+a+19(1+1/a)

This V again has the same limiting value 1 for a »
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or 0 as V according to (12). Table 5 gives a comparison
of (12) and (52). The agreement is again excellent. Thus
with two laminar streams and any kind of crossflow
(ascould occur in compact heat exchangers) the general
method will yield good results.

Table 5. Test of the general method for length effect
and two laminar streams. Comparison between
equation (12) and equation (52)

a v, v, Error (rel.)
equation (12) equation (52) %
01 10-0 096909 097075 +0172
02 50 0-95309 095339 +0-032
05 2:0 093307 093073 —0251
1-0 1-0 092711 092388 —0-348

With pure counterflow and two laminar streams, for
which case the general method also would yield (52),
the correction factor V and Ky [see (6)] is slightly too
high as shown in Fig. 2 for zero wall resistance. The
general method may yield a Ky, which is up to 3-8 per
cent too high in the most disadvantageous case of
oy = op and w = 0. (Pressure drop is not affected as
only the ratio of the two local overall heat-transfer
coefficients is decisive, as discussed in [6].) However,
pure countercurrent flow does not occur frequently in
practical design.

With pure cocurrent flow our general method would
yield values of K, which are slightly too low, which is
obvious for zero wall resistance where V = 1.

Thus for the practical flow arrangements where
cocurrent flow, countercurrent flow and crossflow are
combined (e.g. shell and tube heat exchangers) the
errors of the cocurrent and countercurrent streams
cancel and the general method will yield good results
also even for the (seldom encountered) case of two
laminar streams.

5. CONCLUSION

For all practical purposes the general method de-
veloped for the thermal design of a single phase heat
exchanger gives reliable results and provides a major
advantage over conventional methods.

For some special cases of crossflow more specific
methods can be used for the calculation of the mean
overall heat-transfer coefficient.
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APPENDIX

For the integration of (11) the following integral must be
used which can be solved by partial integration and which
is given, for instance, in [17] p. 94, number 4.

o i
x.Inx.dx=—— (lnx———)+B.  (Al)
n+ i n+1

The integration of (11) can be done as follows. Integrating
only the first two terms of the sum under the integral gives

V=(1+a).(1-%.a+2.a>.1) (A2)

where

¢=1 1
I = 2/3. _ . .
L:O ¢ ln(l + a.¢“3> d¢ (A3)

By extracting 1/a. ¢! out of the brackets the logarithm,
and thus the integral. can be broken down in three integrals

I=L+1L+1 (Ad)
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where the first gives

6=1
lx=—1na.f ¢**.dp = —2.lna
#=0

(A3)

and the second one can be solved according to (Al) with
x=¢andn=4%
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and with the binomial series

3 x=1+a
Iz:‘~J‘ (x*-4.x*+6.x*~4.x+1).Inx.dx. (A10)

5
a x=1

This integral can be broken down into five integrals which
can be solved according to the integral (Al) with n = 4, 3, 2,

¢=1
L= _§J ¢ .ng. dp = 5. (A6) 1 and 0. This yields finally:
#=0
The third integral to be solved is [ = 3 In(1 +a)_i+ 3
o=t s 25 20.a S.4°
L= j 3 In(l +a.9'%) . do. (A7)
#=0 3 3 3
Substituting ¢ according to + 0.2 54 + 5‘"_?-1“(1 +a).
x=1+a.¢'? (AB)
gives: N Substituting in (A4) I, I, and I, according to (All), (A6)
L= f (x— 1)*.Inx.dx (A9) @nd (A5) and introducing I into (A2) leads to (12) of this
a’ Jx=1 paper.

CALCUL D’'UN ECHANGEUR DE CHALEUR AVEC COEFFICIENTS DE TRANSFERT
VARIABLES POUR DES ARRANGEMENTS A ECOULEMENTS CROISES ET MIXTES

Résumé—Dans des cas particuliers d’écoulements croisés, on peut calculer le coefficient global de transfert
thermique en prenant en compte soit les effets de longueur laminaire, soit la dépendance a la température.
Pour un écoulement laminaire la valeur moyenne peut étre calculée, en écoulements a cocourant ou 2
contre-courant, ¢t le résultat est valable pour un arrangement quelconque. Dans le cas de deux
écoulements laminaires, on présente une solution valable pour un arrangement croisé quelconque.

On présente une méthode spéciale relative & la dépendance du transfert thermique vis 4 vis de la
température et aux écoulements croisés, pour un seul rang. Selon cette méthode, le transfert thermique
doit &tre calculé en deux points sl dépend seulement de la température du fluide dans le tube, et en
quatre points s'il est fonction des températures des deux fluides.

Une méthode approchée plus générale est décrite pour calculer le cocficient global de transfert et la
chute de pression globale, méthode valable pour un arrangement quelconque et des effets combinés de
longueur et de température. Cette approche est développéc a partir d’une étude antérieure de contre-
courant pur; le transfert thermique et la chute de pression doivent étre calculés en deux points.

La méthode générale est testée sur deux exemples dont on connait les solutions (cas de courants

croisés et de cocourant) et un trés bon accord est constaté.

DIE AUSLEGUNG VON KREUZSTROM- UND MISCHSTROM-WARMEUBERTRAGERN
BEI VERANDERLICHEN WARMEDURCHGANGSKOEFFIZIENTEN

Zusammenfassung —Fiir spezielle Fille des Kreuzstroms kann der mittlere Warmedurchgangskoeffizient
berechnet werden, wenn entweder die Abhingigkeit des Durchgangskoeffizienten vom Stromungsweg
oder von der Temperatur bekannt ist. Wenn ein Strom laminar ist, kann der mittlere Wirmedurch-
gangskoeffizient in gleicher Weise wie fiir Gleich- und Gegenstrom berechnet werden, wobei die
Ergebnisse fiir jede Art der Stromungsfithrung giiltig sind. Fiir den Fall, daB beide Stréme laminar
sind, wird ein Verfahren angegeben, welches auf jede Art von Kreuzstrom angewendet werden kann.

Fiir nur temperaturabhingigen Wirmeiibergang und fiir Kreuzstrom mit nur einer Rohrreihe wird
ein spezielles Verfahren angegeben. Hingt der Wirmeliibergang nur von der Fluidtemperatur im Rohr
ab, so ist die Rechnung fiir zwei Punkte durchzufiihren. Sind beide Fluidtemperaturen von Einflul3, so
ist eine Rechnung fiir vier Punkte erforderlich. Weiterhin wird fiir die Berechnung des mittleren
Wirmedurchgangskoeffizienten und den Druckabfall ein allgemein giiltiges Niherungsverfahren
vorgeschlagen. welches fir jede Stromungsfiihrung und auch bei Weg- und Temperaturabhingigkeit
der Koeffizienten anwendbar ist. Das Nédherungsverfahren wurde aus einer filr reinen Gegenstrom
entwickelten Methode abgeleitet. Der Wirmedurchgang und der Druckabfall muB3 fiir zwei Stellen
berechnet werden. Das Verfahren wurde an verschiedenen. bereits gelosten Anwendungsfillen (speziellen
Formen von Kreuzstrom und Gleichstrom) erprobt. wobei sehr gute Ubereinstimmung festzustellen war.
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KOHCTPYKLIMA TEIMJIOOGMEHHUKOB C NEPEMEHHLIMU KOD3®OUILIMEHTAMU
MEPEHOCA 711 CUCTEM C TMOMNEPEYHLIM Y CMEIWAHHBIM TEYEHUSIMU
AuHoTalusa — B 4acTHOM cliyyae nepekpecTHOro ToKa MOXeT OblTh paCCYUTaH CyMMAapHBbIH CPEaHHUi
KO3hHULMEHT TemT1000MEHA, KOTAA MMEET MECTO BIIMsIHKUE MO0 ANUHBLI JAMUHAPHOTO NMOTOKA, 1160
TEMIEPATYPHOU 3aBUCHUMOCTH. [1pW HAIMYMHM TOJBKO OIHOTO JIAMMHAPHOIO MOTOKA MOXHO pac-
CYMTATH CpedHee 3HaueHue KodhuuMeHTa Terutonepesaiy ans NPIMOTOYHOrO M NMPOTUBOTOYHOIO
TEUEHUH ; MOJIyYeHHbIH PE3y/bTAT CripaBeiuB AN ntoObix TeyeHuid. B ciyvae OByx JlaMHUHADPHBIX

TEYEHHUA MPUBOMUTCA PELLEHHE [UIS JHOOBIX CTPYKTYP MEPEKPECTHOrO TOKA.

Eciu temioobMeH 3aBHCHT TO51bKO OT TEMICPATYPhl, TO s Cllydyasi MEPEKPECTHOro Toka ¢
OOHUM PsiaoM TPyO nPUBOAMTCS crcunaTbibIi MeTon pacyeTa. COracHO AaHHOMY METOLy HeoOXo-
MIUMO PACCYMTBIBATHL TEMA000MEH B ABYX TOUYKAX B Ciydac €ro 3aBUCHMOCTH TOJIBKO OT TEMIEPaTypbl
KUAKOCTH BHYTpU TPyObi M B HCTLIPEX TOYKAxX, €CNM OH siBAseTcs dyHkuueh obeux temmnepartyp
KUAKOCTH.

Hanee onuceiBacTest 6onee oOWMA MPUONMKEHHBIR METOA pacyeTa CPEAHCro CYMMAapHOTro KO-
dvurerTa TemmoodmeHa M CyMMapHOro rnepernaga AaBieHus, MPUMEHACMOTo st No0bIX THIOB
TeYeHHH. DTO MPHONMKEHHE PA3BUTO Ha OCHOBE OoMlee paHHEro MeTOa pacyera YUCTO NPOTHBO-
TOYHOTO TEYEHHUs, IIPU ITOM TenI00OMeH M Mepermaa AABICHMEA NOMKHLL PACCUMTLIBATHLCA B ABYX
TOYKAX.

O6Gwnit mMeTon MpPoBeps/ICs HA NPUMEPAx, AN KOTOPbIX CYLUECTBYIOT HAACKHbIE PELUCHUS
(0cO0bIE Cydan MePEKPECTHOrO U MPAMOTOUHOTO TeveHui). [lony4ueHo Xxopouiee COBIaaeHue Mexay

TEOPHUEH U IKCTIEPUMEHTOM.
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